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EXPLANATORY NOTE

Presentation Version

This report consists of reproductions of slides and
motion picture captions comprising a presentation given
at the Third ICRPG/AIAA Solid Propulsion Conference in
Atlantic City, New Jersey on June 4-6, 1968. As such it
does not include the verbal explanations that accompanied
the slides. No manuscript was prepared for the Conference.
However, previous publications by the same authors on the
subject are available on request. It is hoped that, des-
pite the terseness of this document, it will serve as a
useful summary of the new material presented at the Con-
ference. Work on this topic is still continuing and a

later report will include revisions of these results along
with new results.
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This paper will include:

1.
2.

Physical model and theory of motor transient.

Theory of spreading of flame over propellant.

Review of previous work on transient prediction.
Predictions of motor transients based on (1) and (2).

Motor firings with non-aluminized AP/PBAA propellant
and comparison with predictions.

Continued on next page.




6. Hangfires: comparison of tests with predictions.

7. Motor firings with aluminized vs. non-aluminized
propellant.

8. Firings with star grains, gas-less igniters, etc.

9. Future problems -- application to more realistic
motors.

At the end (10 minutes):

Movies of flame spreading coupled with motor
transients.
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Theories of Motor Ignition

Transient

Prediction

Reviewed in the Paper:

1.
2.

Guth and Dubrow

Fullman and Neilson

Von Elbe

Summerfield, Parker,
Wenograd, Most, Stang,
dilLauvro, Lukenas and

° MacDonald

STL 1963 (C)
UTC 1963 (C)
ARC 1963
1964, 1966,
1966, 1966,
1966, 1967,
Princeton 1967, 1967

Page 1 of 3 pages.




10.
11.

12.

Adams
Isom

Peleg and Manheimer-
Timnat

Wallis

Thiokol-Huntsville
Hercules

Technion

Imperial Metals
Industries, Ltd.

1965, 1966,

1967
1966

1968

1968
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SOLID PHASE HEAT-UP

pep 3T = s VT + pele9T +p@
At

Simpliifying Assumptions:
9T N7 | "
ay‘ >> ax]
The convective term is neglible during the
ignition interval.

The propellant is completely inert until a
critical ignition temperature is reached.

Above the critical surface temperature the burning
rate iswgictated by the steady state equation,

r:ap".

Reduced Equation:

3T - &, VT
dt y*

( in the surface region will be re-introduced later.
See page 18.)

s

P T, WY TS




Boundary Conditions:

Tix,y,0)=T,
T(X,0°,£)=T,

At y:O()\r%) =-é(ng)

Yzo

The heat diffusion equation and the boundary
conditions are solved to obtain the propellant surface
temperature,

| .
T=T + L ’«"'1»‘[ S _ dr
° /\p T % VE-1

16



EQUATIONS FOR HEAT FLUX AT SURFACE

The assumption is made that radiative heat
transfer to the propellant grain can be ignored.
Only convective heat transfer is considered.

The varjiation of the boundary layer film
coefficient,qfy, is found from an empirical Nusselt
number - Reynolds number correlation.

0.8
Nu, = .073%4 Rex

Nux= ‘20 X
A

<4

4 = .073‘7‘_?_\5‘ Rec;'s

3 CONVECTIVE

= %(7&-7;)

Tq is taken as constant downstream along the
motor agis, but varying with time.

17
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SELF HEATING

It was previously assumed that the propellant
is completely inert until a critical ignition
temperature is reached.

This is an obvious oversimplification. As will
be seen later, marginal ignition situations cannot be
predicted accurately with this model. .
i An alternate assumption was tried, that energy
is released at the propellant surface while the surface

temperature is still below the ignition temperature

according to a law: - _5 >

350«5&;5 Rﬁ @A e ?‘3——

The boundary conditions now become

T(x,Y,0)=
T(x,», t)= T,

At )/:O A.P%T; - [ﬁ a(fs £) + sy/pt)]

The effect of this self heating term is shown on page 30.
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Explanation of Series D

The D series of firings was intended to display the ef-
fects of varying the size of the motor exhaust nozzle systema-
tically while other design parameters were held constant. A
choice was made of the magnitude of the igniter flow and dura-
tion, and these were held constant.

This systematic variation of nozzle throat diameter,
from small to large, was expected to show corresponding sys-
tematic changes in the final equilibrium pressure, from high
to low. It can be seen in the following pressure-time traces
of this series, that this expectation was fulfilled.

However, some irregular behavior showed up in the traces
for the firings with the largest nozzles. Upon examination
of this situation, it was concluded that this resulted from
the choice of an igniter input (mass flow and duration) that
.was very close to the marginal requirement for prompt igni-
tion. Under such circumstances, while the firings with the
smaller nozzles resulted in acceptable pressure-time traces,
the firings with the larger nozzles showed the erratic be-
havior indicative of an ignition input that is marginal.

Further verification of the interpretation that this
particular choice of igniter flow and duration was marginal
is provided by the appearance of some unexpected hangfires
in the Series, during the test firing program. These un-~
expected hangfires are shown on page 32. There was no
change in the firing conditions for the traces shown on
page 32 as compared with the traces shown on page 31. The
interpretation is clear, that the ignition exposure was
marginal. As may be expected in a marginal situation, the
firing behavior is sometimes normal, and in such normal situa-
tions, it was found that the experimental firing trace came
close t the theoretical prediction for that situation.
Such agreement is shown on the figure on page 33.

That the chosen exposure was indeed marginal was de-—
monstrated theoretically by carrying out the computer pre-
diction with a 10% smaller igniter mass flow than that
standardized for Series D. The drastic effect of so small
a reduction in the igniter mass flow is shown in the figure
on page 34. The standard exposure is computed to produce a
normal ignition; however, the 10% weaker exposure results in
a hangfire. It is obvious that the chosen mass flow and dur-
ation were marginal for this motor.

From cbservation of the normal-appearing curves on page 31,
it appears that enlargement of the exhaust nozzle does not
stretch out the induction period but it slows down the rise




of pressure from the start of grain burning to the final
equilibrium level. That the induction period is unaffected
by enlargement of the exhaust nozzle follows theoretically
from the fact that the heat flux in the preignition interval
is not dependent on the pressure level; the slowing down of
the rise of pressure after the induction interval results

from the lower rate of burning associated with the enlarged
exhaust nozzle.
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Effect of Addition of Aluminum on the Ignition Transient.
|

If one sets aside for the moment possible unpredictable
combustion effects caused by aluminum, the presence of pow-
dered aluminum may be expected to affect the pressure-time
trace in several predictable ways. The first and most obvi-
ous is that the presence of powdered aluminum increases the
thermal diffusivity of the solid propellant; this would act
to slow down the rise of surface temperature at any given
point on the propellant grain and thus slow down the rate
of flame spreading. In addition the presence of aluminum
changes both the burning rate and the pressure exponent.
What these changes are depends on whether the aluminum is
added at the expense of ammonium perchlorate, at the expense
of fuel, or at the expense of both. For the comparative fir-
ings reported in this paper, the aluminum was added largely
at the expense of the perchlorate, although some of the fuel
was also removed. The percentages of the three components
for the two propellants are shown at the top of the table in
the figure on page 35. The burning rate exponent was de-
pressed from 0.40 to 0.27 in the range of pressure applicable
to this transient. At the same time, a significant change
was observed in the burning rate of the propellant (measured
in a strand burner), the value rising from 0.09 in/sec at
the preignition pressure of 40 psia to 0.12 in/sec at the
same pressure. Thus, the addition of aluminum made the pro-
pellant burn more actively in the lower range of pressure
corresponding to the preignition interval.

In the particular firing comparison reported in this
paper, the dominant factor seemed to be the increase in the
burning rate at the lower level of pressure. As a result
the transient became shorter. If we had been able to hold
the burning rate curve unchanged, then the effect of aluminum
addition would have been to delay or stretch out the ignition
transient.

When the tests of aluminized propellant were extended to
form Series E, (page 35) to test the effect of systematic
variation of exhaust nozzle diameter, the same scatter observed
in Series D (see page 31A) occurred in this Series. Some of
the firing traces came out normal, and from these the effect
of aluminum addition was deduced. However, for the enlarged
nozzles leading to marginal ignition situations, considerable
scatter was encountered, but it was not until after the entire
test series was completed that it was realized that this scat-
ter had nothing to do with the aluminization of the propellant
but rather with the particular choice of a marginal ignition
exposure. The interpretation of the set of curves on page 35
is the same, therefore, as for the set on page 31.
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In conclusion, we have shown that:

1.

We have developed a physically rational theory that
can predict starting motor transients for motors
with head-end pyrogen igniters.

The complete transient is predictable, including the
flame spreading interval.

A marginal igniter can lead to a hangfire, and the
boundary between a satisfactory igniter and an unsat-
isfactory one is very narrow.

Continued on next page.
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Addition of aluminum powder to a propellant acts to slow
down the ignition transient by increasing the thermal
diffusivity. However, since the addition of aluminum
changes the burning rate this prediction may be altered.

Pressure overshoots can be caused either by too vigor-
ous an igniter or by a slow,long-duration igniter [pre-
heating of the propellant surface.]

Extensions are needed in the analytical prediction method
to take care of back-end ignition configurations, small

port-to-throat designs, etc.




FUTURE EXTENSIONS OF THEORY

Small port-to-throat area ratios (high
volumetric loading).

Gas-less igniters and igniters with
intense radiation.

Multi-perforated grains.

Aft end ignition and flame spreading into
stagnant regions.

Nonsteady state burning rate effects for
very rapid transients.

Erosive burning effects.

Self heating in marginal ignition situations.
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APPENDIX A

The following material is taken from a movie

which was part of the paper presentation.
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INTRODUCTION

The ignition transient can be divided into

‘three distinct intervals:

1. Induction Interval - The time from the

first application of the igniter stimulus to
the exposed surface of the grain until the
appearance of the first flame.

2. Flame Spreading Interval - The time from

the appearance of the first flame until the
entire propellant grain is burning.

3. Chamber Filling Interval - The time from

the end of flame spreading until the equilib-

rium pressure is attained.
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SCHEMATIC REPRESENTATION,
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This film deals with the flame spreading
intervals for three situations of particular in-
terest:

1. Flame spreading over an unaluminized

propellant grain.

2. Flame spreading over an aluminized pro-

pellant grain.

3. Flame spreading during a hangfire.

‘First, some description of the laboratory

motor and pyrogen-type igniter ---
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EXPERIMENTAL MOTOR

The experimental motor was approximately
square in cross-section (1" x 3/4"). One side

wall had a Plexiglas window permitting photogra-

phic observation of the flame inside the chamber.

The typical nozzle throat was 1/4 inch in diam-
eter. The chamber pressure ranged from about
100 to 800 psia. The typical thrust level was
about 15 1bs.
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IUNITERF

Ignition was achieved with the hot gases
from a methane-oxygen combustor fitted to the
forward end of the rocket motor, which in turn
was started by fast action valves and ignited
by a spark. The temperature of the hot igniter
gas was estimated to be 2500°K. The igniter
mass flow rate was set at about 0.018 1bm/sec,
which established pre-ignition pressures in the
rocket motor ranging from 30 to 90 psia, depen-

ding on the exhaust nozzle diameter.
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MOVIE SCENE 1

This piece of film shows a view of the experi-
mental motor and the pyrogen-type igniter mounted
on the test stand. A view of the surrcunding test

cell is also shown.
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PROPELLANT GRAIN

: The propellant grain was a thin, flat slab
' 3/4 inch wide by 9 1/2 inches long, weighing
about 50 grams. The propellant was a composite
PBAA-Epon 828/AP type made in our own labora-
i tories. The burning rate at 1000 psia was 0.30
in./sec and 0.13 in./sec at 100 psia. The meas-

ured ignition temperature was about 420°C.
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CASE 1:

FLAME SPREADING CVER AN UNALUMINIZED PROPELLANT

Propellant: PBAA(20%)/AP(80%)
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You will see a view of the test rocket motor
showing the window through which the propellant
flame will be seen. After viewing the motor, the
illumination will go out and then the igniter will
start. After a short time (an induction interval
of about 40 msec), the leading edge of the pro-
pellant grain will start to burn. Flame spread-
ing will then ensue, running from left to right.

(framing rate: 2000 frames/sec)
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MOVIE SCENE 2

This piece of film shows a close-up view of
the experimental motor showing the observation
window. The flame spreading over an unaluminized

propellant grain is then seen.
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WHAT YOU SAW IN THE FIRING TEST

After an induction period (not all of it
was shown) in which no flame was seen on the pro-
pellant, you saw ignition take place at the lead-
ing edge. As the flame advanced to the right (to-
ward the exit nozzle), bits of flame appear at
isolated spots ahead of the main flame front.
These flamelets did not spread (theory says they
should not) and they eventually were overtaken by

the main flame.
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CASE 2:

FLAME SPREADING OVER AN ALUMINIZED PROPELLANT

Propellant: PBAA(17%)/AP(68%)/A1(15%)




THE IMPORTANT FEATURES TO BE OBSERVED ARE:

1. Particles of molten aluminum can be seen rising from
the ignited portion of the grain and entering the main gas
stream. Many are seen rolling down the surface.

2. In general, those particles that hit the unignited sur-
facé do not attach themselves there or cause any signifi-
cant spread of ignition as they travel downstream.

3. In short, the flame spreading over aluminized propel-
lant is very similar to flame spreading over unaluminized
propellant. The quantity of hot aluminum particles liber-
ated frbm the grain are not sufficient to augment signifi-

cantly the spread of ignitedness.
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MOVIE SCENE 3

This piece of film shows the flame

over an aluminized propellant grain.

spreading
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CASE 3:

FLAME SPREADING DURING A HANGFIRE

When the igniter heat stimulus is stopped
too soon after the start, so that the small por-
tion of the propellant grain then burning gen-
erates insufficient hot gas to carry out rapid
completion of flame spreading, a hangfire will

occur.

Propellant: PBAA(20%)/AP(80%)
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THE IMPORTANT FEATURES TO BE OBSERVED ARE:

1. Rapid flame spreading occurs right after the
appearance of the first flame and continues un-
til approximately 25% of the grain is ignited.

2. The flame spreading rate is markedly reduced,
nearly to zero, right after the igniter stimulus
is removed.

3. Finally, after a long delay, rapid flame
spreading takes place over the remainder of the

grain.
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MOVIE SCENE 4

This piece of film shows the flame spreading
over an unaluminized propellant grain during a

hangfire situation.
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